challenge$categories
##      color                  name score_out_of_10
## 1  #f3c32c               Housing         1.00000
## 2  #f3d630        Cost of Living         2.61800
## 3  #f4eb33              Startups        10.00000
## 4  #d2ed31       Venture Capital        10.00000
## 5  #7adc29   Travel Connectivity         3.65450
## 6  #36cc24               Commute         4.68725
## 7  #19ad51      Business Freedom         8.67100
## 8  #0d6999                Safety         5.71550
## 9  #051fa5            Healthcare         8.74800
## 10 #150e78             Education         8.62450
## 11 #3d14a4 Environmental Quality         6.48150
## 12 #5c14a1               Economy         6.51450
## 13 #88149f              Taxation         4.48800
## 14 #b9117d       Internet Access         5.60550
## 15 #d10d54     Leisure & Culture         9.40700
## 16 #e70c26             Tolerance         8.01250
## 17 #f1351b              Outdoors         7.01400
ggplot(data = challenge$categories, aes(x=score_out_of_10)) + geom_histogram(aes(fill = name))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Based on the table and histogram above we can see the cost of living score for the San Francisco/Bay Area is very low at a 2.5. However, quality of life varies throughout the plot and table since there are many variables that represent quality of life. With this information we can see what variables in the Bay Area need to be fixed and improved upon.