West Coast Living?
In West Coast metropolitans, how important is environmental quality to quality of life and cost of living?
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(httr)
## Warning: package 'httr' was built under R version 3.5.3
library(jsonlite)
## Warning: package 'jsonlite' was built under R version 3.5.3
Data Cleaning
phx <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:phoenix/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(phx) <- phx[1,]
phx <- phx[-1,]
lax <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:los-angeles/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(lax) <- lax[1,]
lax <- lax[-1,]
sfo <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:san-francisco-bay-area/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(sfo) <- sfo[1,]
sfo <- sfo[-1,]
sea <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:seattle/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(sea) <- sea[1,]
sea <- sea[-1,]
slc <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:salt-lake-city/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(slc) <- slc[1,]
slc <- slc[-1,]
lv <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:las-vegas/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(lv) <- lv[1,]
lv <- lv[-1,]
sd <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:san-diego/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(sd) <- sd[1,]
sd <- sd[-1,]
den <- t(fromJSON(rawToChar(GET("https://api.teleport.org/api/urban_areas/slug:denver/scores/")$content))$categories[c('name','score_out_of_10')])
colnames(den) <- den[1,]
den <- den[-1,]
west_coast <- as.data.frame(rbind(den,lax,lv,phx,sd,sfo,slc,sea)) %>% mutate_all(function(x) as.numeric(as.character(x)))
Regressions
I tried a bunch of regressions to see what effects quality of life on the West Coast
summary(lm(`Cost of Living` ~ Startups + `Commute` + Taxation + `Environmental Quality`+ Safety,data=west_coast))
##
## Call:
## lm(formula = `Cost of Living` ~ Startups + Commute + Taxation +
## `Environmental Quality` + Safety, data = west_coast)
##
## Residuals:
## 1 2 3 4 5 6 7 8
## 0.02533 -0.05395 0.39683 -0.12977 0.71106 -0.16113 -0.22865 -0.55972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.29756 17.19670 1.413 0.293
## Startups -0.87429 0.34567 -2.529 0.127
## Commute -1.89803 1.92914 -0.984 0.429
## Taxation -0.52667 2.58048 -0.204 0.857
## `Environmental Quality` -0.03323 0.60966 -0.055 0.961
## Safety -0.22745 0.62574 -0.363 0.751
##
## Residual standard error: 0.7331 on 2 degrees of freedom
## Multiple R-squared: 0.8998, Adjusted R-squared: 0.6493
## F-statistic: 3.592 on 5 and 2 DF, p-value: 0.232
When I try a bunch of different variables at once in the model it doesnโt have any significant values. However, when I only make the model one variable, one variable becomes significant.
summary(lm(`Cost of Living` ~ Startups,data=west_coast))
##
## Call:
## lm(formula = `Cost of Living` ~ Startups, data = west_coast)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.93971 -0.30294 0.03967 0.39606 1.05137
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.0067 1.6104 6.835 0.000482 ***
## Startups -0.7502 0.1960 -3.828 0.008683 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7208 on 6 degrees of freedom
## Multiple R-squared: 0.7095, Adjusted R-squared: 0.661
## F-statistic: 14.65 on 1 and 6 DF, p-value: 0.008683
Maybe working for a start up makes people happier? Could be because they are able to manage their time differently.